Math 261 Spring 2023 Lecture 16

$$
\begin{aligned}
& \text { Prove } \frac{d}{d x}[c]=0 \\
& f(x)=c \\
& \frac{d}{d x}[f(x)]=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{C-C}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=0 \\
& \text { Prove } \frac{d}{d x}[c f(x)]=c \frac{d}{d x}[f(x)] \\
& \text { Let } g(x)=c f(x) \\
& \frac{d}{d x}[g(x)]=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=\lim _{h \rightarrow 0} \frac{c f(x+h)-c h x}{h} \\
& \begin{aligned}
= & \lim _{h \rightarrow 0} \frac{c[f(x+h)-f(x)]}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned} \\
& =c \frac{d}{d x}[f(x)]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Prove } \frac{d}{d x}\left[x^{n}\right]=n x^{n-1} \\
& f(x)=x^{n} \\
& \frac{d}{d x}[f(x)]=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{n}+n x^{n-1} h+\frac{n(n-1)}{2} x^{n-2} h_{+\cdots}^{2}+h^{n} x^{h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{n x^{n-1} h+\frac{n(n-1)}{2} x^{n-2} h^{2}+\cdots+h^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{K\left(n x^{n-1}+\frac{n(n-1)}{2} x^{n-2} h+\cdots h^{n+n}\right.}{h} \\
& \text { ex: } \begin{aligned}
& \frac{d}{d x}\left[5 x^{4}\right]=5 \frac{d}{d x}\left[x^{4}\right]=5 \cdot 4 x^{n-1} \\
&=20 x^{3} \\
& \frac{d}{d x}[-8 \cos x]=-8 \frac{d}{d x}[\cos x]=-8 \cdot(-\sin x)
\end{aligned} \\
& =8 \operatorname{Sin} x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Prove } \frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)] \\
& K(x)=f(x)+g(x) \\
& \frac{d}{d x}[k(x)]=\lim _{h \rightarrow 0} \frac{k(x+h)-k(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)+g(x+h)-f(x)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)+g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}+\frac{g(x+h)-g(x)}{h}\right] \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& \frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)] \\
& \frac{d}{d x}[8+\sin x]=\frac{d}{d x}[8]+\frac{d}{d x}[\sin x]=0+\cos x \\
& \begin{aligned}
\frac{d}{d x}\left[x^{2}+\sqrt{x}\right] & =\frac{d}{d x}\left[x^{2}\right]+\frac{d}{d x}[\sqrt{x}] x^{1 / 2}=\cos x \\
& =2 x^{2-1}+\frac{1}{2} x^{1 / 2-1} \\
& =2 x^{1}+\frac{1}{2} x^{-1 / 2}=2 x+\frac{1}{2 \sqrt{x}}
\end{aligned}
\end{aligned}
$$

Given $\quad f(x)=\frac{1}{3} x^{3}-16 x+10$

1) find $f^{\prime}(x)$

$$
\begin{aligned}
f^{\prime}(x)=\frac{d}{d x}[f(x)]=\frac{d}{d x} & {\left[\frac{1}{3} x^{3}-16 x+10\right] } \\
& =\frac{d}{d x}\left[\frac{1}{3} x^{3}\right]-\frac{d}{d x}[16 x]+\frac{d}{d x}[10]
\end{aligned}
$$

2) Solve $f^{\prime}(x)=0 \quad=\frac{1}{3} \cdot 3 x^{2}-16 \cdot 1+0$

$$
\begin{aligned}
& x^{2}-16=0 \\
& \vdots \\
& x= \pm 4
\end{aligned}=x^{2}-16
$$

Given $f(x)=\frac{1}{2} x-\sin x$

1) find $f^{\prime}(x)$

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d x}[x] & =\frac{1}{2} \cdot 1 \\
& =\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x)=\frac{d}{d x}\left[\frac{1}{2} x-\sin x\right] & =\frac{d}{d x}\left[\frac{1}{2} x\right]-\frac{d}{d x}[\operatorname{Sin} x] \\
& =\frac{1}{2}-\cos x
\end{aligned}
$$

2) Solve $f^{\prime}(x)=0$ on interval $[0,2 \pi)$.

$$
Q I \rightarrow x=\frac{\pi}{3}
$$

$$
\begin{array}{lll}
\frac{1}{2}-\cos x=0 & \cos x=\frac{1}{2} & \text { QI } \dot{\varepsilon} \cdot Q \underline{V} \\
\text { Ref. Angle } \\
x=\frac{\pi}{3} & 60^{\circ}=\frac{\pi}{3}
\end{array}
$$

$$
\text { QI } \rightarrow x=2 \pi-\frac{\pi}{3}=\frac{5 \pi}{3}
$$

find $\frac{d}{d x}[\sqrt[3]{x} \cos x]$
using Product Rule

$$
\begin{aligned}
& =\frac{d}{d x}[\sqrt[3]{x}] \cdot \cos x+\sqrt[3]{x} \cdot \frac{d}{d x}[\cos x] \\
& =\frac{d}{d x}\left[x^{1 / 3}\right] \cos x+\sqrt[3]{x} \cdot(-\sin x)
\end{aligned}
$$

using Power Rule

$$
\begin{aligned}
& =\frac{1}{3} x^{1 / 3-1} \cdot \cos x+\sqrt[3]{x} \cdot(-\sin x) \\
& =\frac{1}{3 \sqrt[3]{x^{2}}} \cdot \cos x-\sqrt[3]{x} \cdot \sin x
\end{aligned}
$$

quotient Rule

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{[g(x)]^{2}}
$$

find

$$
\begin{aligned}
& \text { find } \left.\left.\begin{array}{l}
\frac{d}{d x}[\tan x]=\frac{d}{d x}\left[\frac{\sin x}{\cos x}\right]=\frac{\cos x \cdot \cos x-\sin x \cdot(\sin x)}{[\cos x]^{2}} \\
=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x \\
\frac{d}{d x}[\sin x]=\cos x \\
\frac{d}{d x}[\cos x]=\sin x
\end{array}\right]=\tan x\right]=\sec ^{2} x
\end{aligned}
$$

find $f^{\prime}(x)$ for $f(x)=x \tan x$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}[x \tan x] \\
& =\frac{d}{d x}[x] \cdot \tan x+x \cdot \frac{d}{d x}[\tan x] \\
& =1 \cdot \tan x+x \cdot \sec ^{2} x \\
& =\tan x+x \cdot \sec ^{2} x
\end{aligned}
$$

